US009058407B2

a2 United States Patent

(10) Patent No.: US 9,058,407 B2

Guo (45) Date of Patent: Jun. 16, 2015
(54) PERSISTENT MULTIMEDIA CONTENT (56) References Cited
VERSIONING
U.S. PATENT DOCUMENTS
(75) Inventor: Dongbai Guo, Nashua, NH (US) 6,671,853 B1* 12/2003 Burkett etal. ..co........ 715/235
7,376,673 B1* 5/2008 Chaleckietal. 715/223
H . : : 2002/0169777 Al* 11/2002 Balajel et al. 707/10
(73) - Assignee: grgde g‘tsfnatmgzl Cosrporat"’n’ 20050165796 Al* 7/2005 Moore 707/100
edwood Shores, CA (US) 2005/0165815 Al* 7/2005 Ozzieetal. . . 707/100
2006/0053126 Al* 3/2006 Bacaetal. 707/100
(*) Notice: Subject to any disclaimer, the term of this %88?; 8(1)2;‘%8 ﬁi: igggg Edef TR - 7077(/) 179?011{
. f acaetal. ...
paterlt 18 eXtended or adJuSted under 35 2007/0106647 Al 3k 5/2007 Schwalb '''''''''' 707/3
U.S.C. 154(b) by 1702 days. 2008/0162498 AL* 7/2008 OMOIZUI +..vovrrrreerrrrreer 707/10
2009/0043785 Al* 2/2009 Garward et al. 707/100
(21) Appl. No.: 12/009,750 * cited by examiner
- Primary Examiner — Khanh Pham
(22) Filed: Jan. 22,2008 Assistant Examiner — Eliyah S Harper
74) Attorney, Agent, or Firm — Kraguljac Law Group, LLC
(65) Prior Publication Data 74 a8 . P
57 ABSTRACT
US 20095/0187610 Al Jul. 23, 2009 Systems, methods, and other embodiments associated with
versioned persistent storage of multimedia content in a data-
(51) Int.ClL base object are described. One example method includes
GOG6F 7/00 (2006.01) controlling a database management system (DBMS) to
GOG6F 17/30 (2006.01) instantiate a database object that has a binary large object
GOG6F 19/00 (2011.01) (BLOB) attribute, an XML edits attribute, and a set of meta-
(52) US.CL data attributes. The method includes storing a binary stream
CPC ... GOGF 17/30917 (2013.01); GOGF 17/3028 associated with a multimedia content (e.g., medical image) in
(2013.01); GO6F 19/327 (2013.01); GO6F the BLOB attribute and storing an editing history of the set of
17/30309 (2013.01) metadata attributes as a set of edit entries in the XML edits
(58) Field of Classification Search attribute. The method also includes controlling the DBMS to

USPC 707/999.1, 999.01, 736, 791, 706, 687,
707/695, 99.101
See application file for complete search history.

store the database object in a column in a table in a relational
database managed by the DBMS.

31 Claims, 10 Drawing Sheets

100

Start
* 110
Control DBMS L/
To Instantiate Database Object
i 120

Store First Set Of Binary Data |/

To Store Database Object

In Database Object
1 130
Store Value(s) |/
In Metadata Attributes
: 140
Control DBMS |/

End

U.S. Patent Jun. 16, 2015 Sheet 1 of 10 US 9,058,407 B2

100

Start

: 110

Control DBMS |/

To Instantiate Database Object

4 120

Store First Set Of Binary Data | _/

In Database Object

y 130

Store Value(s) 4

In Metadata Attributes

y 140

Control DBMS |/

To Store Database Object
y

End

Figure 1

U.S. Patent Jun. 16, 2015 Sheet 2 of 10 US 9,058,407 B2

200

Start
* 210
Control DBMS |/
To Instantiate Database Object
2 220
Store First Set Of Binary Data | _/
In Database Object
N 4 230
Store Value(s) |/
In Metadata Attributes
¥ 240
Control DBMS 4
To Store Database Object
250
Store Editing Entry /
Upon Detecting
Change To Metadata Attribute

Y

End

Figure 2

U.S. Patent Jun. 16, 2015 Sheet 3 of 10 US 9,058,407 B2

300

/

Start

x 310
: Control DBMS |/
To Instantiate Database Object
4 320
Store First Set Of Binary Data | _/
In Database Object
2 330
Store Value(s) |/
In Metadata Attributes
4 340
Control DBMS |/
To Store Database Object
. 4 350
Store Editing Entry /
Upon Detecting
Change To Metadata Attribute
y 360
Store Binary Data /
Associated With

Change To Metadata Attribute

A

End

Figure 3

U.S. Patent

Jun. 16, 2015 Sheet 4 of 10 US 9,058,407 B2
/ 400
Start
- 410
Control DBMS %
To Instantiate Database Object
¥ 420
Store First Set Of Binary Data | _“/
In Database Object
y 430
Store Value(s) |/
In Metadata Attributes
¥ 440
Control DBMS |/
To Store Database Object
A 4 450
Store Editing Entry /
Upon Detecting
Change To Metadata Attribute
i 460
Control DBMS To /
Produce Index For
XML Edits Attribute
i 470
Provide Response To Query /
Y
End

Figure 4

U.S. Patent Jun. 16, 2015 Sheet 5 of 10 US 9,058,407 B2

500

Start
* 510
Control DBMS |/
To Instantiate Database Object
y 520
Store First Set Of Binary Data |/
In Database Object
y 530
Store Value(s) |/
In Metadata Attributes
¥ 540
Control DBMS 4
To Store Database Object
y 550
Store Editing Entry /
Upon Detecting
Change To Metadata Attribute
y 560
Provide Stream Representing /
Selected Version

End

Figure 5

U.S. Patent Jun. 16, 2015 Sheet 6 of 10 US 9,058,407 B2

/ 600

Database Object Logic 630
610

Versioning Logic Media Database
620 |
Media Content Table 640
ID Object
650 660

~ N

Figure 6

U.S. Patent Jun. 16, 2015 Sheet 7 of 10 US 9,058,407 B2

/ 700

Database Object Logic 730
710

Versioning Logic Media Database
720 ‘
Media Content Table 740
Assembly Logic ID Object
770 750 760
Binary Stream
780

Figure 7

U.S. Patent Jun. 16, 2015 Sheet 8 of 10 US 9,058,407 B2
Programmer [€ > Process
\ 820 N~ 830
Initialization Update, Update,
\ 840 \ 850 \ 860
l___T \ 800
System

- 810

Figure 8

U.S. Patent Jun. 16, 2015 Sheet 9 of 10 US 9,058,407 B2

o14 N\ 16 ~

Process Data
900
Computer)
02 ~ SN 930
Processor Memory Persistent Multimedia
Content Versioning Logic
Bus
/ 910 908 /
I/O Ports

Vo L os
Interfaces Disk
918 Network | ~— 920

Devices

Figure 9

U.S. Patent Jun. 16, 2015 Sheet 10 of 10 US 9,058,407 B2

/ 1000
Segment 1 Segment 2 Segment 3 Segment 4
1002 1004 1006 1008
Y h 4
Segment 5 Segment 6 Segment 7
1012 1014 1016
1010
Segment 1 New Original Segment 4
+
Segment 3

Figure 10

US 9,058,407 B2

1
PERSISTENT MULTIMEDIA CONTENT
VERSIONING

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction of the
patent document or the patent disclosure as it appears in the
Patent and Trademark Office patent file or records, but other-
wise reserves all copyright rights whatsoever.

BACKGROUND

Medical images (e.g., Magnetic Resonance Imaging
(MRI) image) are large. A comparably very small amount of
metadata often describes a medical image. The metadata may
include, for example an image name, a date acquired, a patient
name, a patient identifier, an image size, a billing code, and so
on. Once recorded, medical images tend to change relatively
infrequently, if at all, as compared to the metadata describing
these images. However, changes to metadata may typically
have lead to duplication of related medical images, yielding
tremendous wastage of computing resources. Similar issues
apply to other types of multimedia content (e.g., movies, slide
shows).

Conventionally, media databases have managed collec-
tions of multimedia content and metadata columns by sepa-
rating the two items. For example, some medical imaging
manufacturers follow the DICOM (Digital Imaging and
Communication in Medicine) standard (available at [http://
medical.nema.org/dicom/2007/]) for versioning support.
This standard requires storing separate copies of the edited
medical images. The metadata may typically have been stored
in a media content table while the actual image data may have
been stored externally in external file storage. Pointers in a
media content table may have provided indirect access to the
externally stored image files. Conventionally, it has been
possible to query the metadata columns in the media content
table to acquire pointers to actual files stored in external file
storage. Unfortunately, this configuration has had issues with
synchronization between metadata and image data, transac-
tion control, security, auditing, backup processing, restora-
tion processing, replication, high availability, versioning, and
so on. These issues may have arisen because it is relatively
inexpensive (e.g., in time, in resources, in computational
complexity) to change a relational database column but rela-
tively expensive to propagate a change to external file storage.
Thus, it may have been easy to change metadata but difficult
to propagate the change to an image stored in external file
storage. Separating the metadata from the image data nega-
tively impacts the features (e.g., versioning) provided by stor-
ing things in databases.

To understand an issue with the separated architecture,
consider a media query directed at media stored in an external
file storage. The media query may be processed by a middle
tier that performs query mapping so that a query can be made
against metadata stored in a media content table. The meta-
data acquired in response to this first action can then be used
to make a query against an external file where the media data
is stored. An assembly process may then be required in the
middle tier to associate the initially retrieved metadata with
the ultimately retrieved media data. Recall that metadata can
easily get out of synchronization with media data, which may
yield a complicated, resource-intensive, and not provably
correct assembly process for example, when the ordering of
DICOM attributes do not follow the DICOM standard (e.g.,

20

25

30

40

45

2

ascending). These issues may arise in the separated architec-
ture since metadata may be stored as traditional relational
database columns with a single version and no update history.
In some examples, a single flag may be maintained to indicate
whether a metadata modification occurred. When this flag
indicates that a metadata change occurred, an entire media (or
its header) may be reassembled.

Multimedia content is becoming ubiquitous. Database
management systems are now used to store this type of digital
media. Some conventional systems process multimedia con-
tent by encoding it as a binary stream and then persistently
storing the binary stream in a binary large object (BLOB).
Some conventional systems may facilitate editing metadata
associated with multimedia content. These conventional sys-
tems may persistently store and manage the metadata sepa-
rately from the multimedia content. While the metadata may
be retrieved for purposes including querying, auditing,
assembling a version, and so on, these conventional systems
have drawbacks due to the separate storage. For example,
conventional systems are typically inefficient with respect to
versioning associated with the metadata edits, if they provide
any versioning at all. For example, one conventional system
may store the multimedia content as a BLOB and may sepa-
rately store metadata about the BLOB. However, when
changes are made to the metadata, the conventional system
may replicate the entire object, including the multimedia
content and the metadata attributes, even though only the
metadata attributes were changed. Thus, conventional multi-
media storage systems may save multiple copies of the same
complete multimedia content, which can lead to significant
wastage of storage. Additionally, changes to metadata may
not be directly independently accessible. For example,
accessing the changes to metadata may require accessing an
entire BLOB and/or multiple versions of a BLOB.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate various
example systems, methods, and other example embodiments
of'various aspects of the invention. It will be appreciated that
the illustrated element boundaries (e.g., boxes, groups of
boxes, or other shapes) in the figures represent one example of
the boundaries. One of ordinary skill in the art will appreciate
that in some examples one element may be designed as mul-
tiple elements or that multiple elements may be designed as
one element. In some examples, an element shown as an
internal component of another element may be implemented
as an external component and vice versa. Furthermore, ele-
ments may not be drawn to scale.

FIG. 1 illustrates an example method associated with per-
sistent multimedia content storage with versioning.

FIG. 2 illustrates another example method associated with
persistent multimedia content storage with versioning.

FIG. 3 illustrates another example method associated with
persistent multimedia content storage with versioning.

FIG. 4 illustrates another example method associated with
persistent multimedia content storage with versioning.

FIG. 5 illustrates another example method associated with
persistent multimedia content storage with versioning.

FIG. 6 illustrates an example system associated with per-
sistent multimedia content storage with versioning.

FIG. 7 illustrates another example system associated with
persistent multimedia content storage with versioning.

FIG. 8 illustrates an example Application Programming
Interface (API) associated with persistent multimedia content
storage with versioning.

US 9,058,407 B2

3

FIG. 9 illustrates an example computing environment in
which example systems and methods, and equivalents, may
operate.

FIG. 10 illustrates a binary stream being assembled from
binary data associated with a multimedia content and a set of
pre-computed binary segments that may be stored in the
extension attribute of a database object.

DETAILED DESCRIPTION

Example systems and methods use persistent database
objects to store and manage both multimedia content and
metadata editing history. Both the multimedia content, which
may be encoded as a binary stream, and the metadata, are
stored in a single object. This differs from conventional solu-
tions that store binary data and metadata separately. In one
example, an entire persistent database object having media
content, metadata attributes, and a metadata change attribute
can be stored in a single database column. Thus, versioning of
the multimedia content associated with the persistent data-
base object can be implemented as an inherent property of the
persistent multimedia content. In one example, editing his-
tory may be treated as a separate attribute of a database object.
In another example, editing history may be treated as part of
an object metadata. In another example, editing history may
be treated as part of a BLOB (e.g., extension BLOB) that
forms part of a database object, and so on.

In one example, a database object may include a BLOB
attribute that stores a particular version of a multimedia con-
tent. The BLOB may store a binary stream. This may be the
“original” binary stream associated with a multimedia con-
tent. The database object may also include a document meta-
data attribute that specifies a metadata editing history. In one
example, this attribute may be an XML attribute. This
attribute may be constrained by an XML schema. This
attribute may by indexed using XMLIndex and thus may be
queried using keywords and/or an XPath query. Note that the
metadata and its change history are stored in the same object
as the content. When the editing history is handled as part of
an object metadata, and when the object metadata is handled
by an XML attribute, then the editing history may be indexed
along with other XML metadata. In one example, the data-
base object may also include a second BLOB attribute (e.g.,
extension). This second BLOB attribute may store a binary
mapping of metadata editing history. This binary mapping
facilitates efficient construction of versions of the binary mul-
timedia content using the stored version and the mapping. In
one example, an arbitrary version of the binary multimedia
content may be constructed without reaching back to an ini-
tial version of the multimedia content and then sequentially
stepping through intermediate versions of the multimedia
content.

The elements and format of the database object facilitate
seamlessly combining a change history with other multime-
dia metadata so that a single set of XML indices can be built
for multimedia metadata to query for multimedia content
across versions. Versioning information and editing history
are distinct concepts. An object may be versioned without
editing history. For example, an editing history can be derived
from a set of assembly instructions. The editing history deri-
vation could be performed by an external logic. In one
example, assembly instructions could be derived at runtime
from editing history. In another example, editing history may
be persistently stored. Whether editing history is stored may
be determined by, for example, a tradeoff made between
storage space and processing speed. In one example, both
editing history and version information may be stored. Ver-

10

20

25

30

35

40

45

50

55

4

sion information may include two parts. A first part may be an
assembly instruction that can be stored in an object’s XML
metadata, in an object’s binary data, and so on. A second part
may be added binary streams. The added binary streams may
be binary streams segments that are not part of the current
version of a media object that is stored in a first BLOB
attribute in its entirety. The binary streams may be stored in
XML as, for example, Base64 binary data, or in the extension
BLOB portion of a database object.

In one example, the database object is implemented using
an object-relational database technology (e.g., PL/SQL
object). Additionally, XML content can be implemented with
XML database technology. Stream reading of different mul-
timedia content versions can be implemented with a stream-
ing interface in different programming languages (e.g., C,
C++, CH).

The multimedia content may be, for example, a medical
image. The metadata associated with such content may make
up less than 0.1% of the byte stream associated with the
image. Saving an entire duplicate copy of the multimedia
content just because one or two bytes of the metadata are
edited leads to enormous wastage of space. Thus, example
systems and methods facilitate saving metadata and changes
to metadata without replicating the associated multimedia
content. Binary mappings of the metadata editing history can
be stored in the second BLOB attribute to prevent the dupli-
cation associated with complete copying and storing. The
efficiencies gained by such version control do not come with
the additional cost of managing additional objects. Conven-
tionally, a different object may have been created for each
version. Instead, example systems and methods may use a
single database object to store original multimedia content,
associated metadata, and associated metadata editing history.
Thus, only a single set of indices is required for both the
multimedia content and its editing history. This facilitates
keeping index size small which in turn facilitates keeping a
query interface simple and efficient.

The metadata attribute of the database object can be
thought of as an audit message that can be displayed and
reviewed. In one example, the audit message may be user-
readable. In one example of the persistent database object, the
metadata and its related multimedia content can be retrieved
using a single query. The metadata attribute may be indexed
with an XML index to allow keyword and/or XPath query.

Differences between multimedia content stored in the first
BLOB attribute and another version edited by a user can be
pre-computed. In one example, these differences can be
stored in the second BLOB attribute. The differences can be
retrieved during an assembly process without generating and/
or moving binary data since all binary segments are either
available in the original media in the first BLOB attributes or
are precomputed and stored in the second BLOB attributes.
Therefore, the differences and results from two or more
BLOBs can be accessed at runtime without moving and/or
copying binary data. This reduces overhead associated with
providing a version of a multimedia content or a version of an
object when compared to conventional systems.

Some applications (e.g., healthcare) require unique identi-
ties for multimedia contents. The unique identity can be
stored in a metadata attribute associated with the database
object and thus can be accessed, queried, indexed, versioned,
and so on, similar to how other metadata attributes are pro-
cessed. In a system where multiple versions of the same
DICOM object coexists, the multiple versions may be
accessed through different identifiers managed by the same
database object. Conventional systems may have stored the
identity in a different object, which may therefore have

US 9,058,407 B2

5

required multiple indices and a complex query interface.
These multiple indices and complex query interface would
then be employed during a lengthy run-time assembly that,
hopefully, would recreate the desired content and associate it
with the desired identity. Unfortunately, the metadata and its
related multimedia content frequently lost synchronization.

The following includes definitions of selected terms
employed herein. The definitions include various examples
and/or forms of components that fall within the scope of a
term and that may be used for implementation. The examples
are not intended to be limiting. Both singular and plural forms
of terms may be within the definitions.

29 <

References to “one embodiment”, “an embodiment”, “one
example”, “an example”, and so on, indicate that the embodi-
ment(s) or example(s) so described may include a particular
feature, structure, characteristic, property, element, or limita-
tion, but that not every embodiment or example necessarily
includes that particular feature, structure, characteristic,
property, element or limitation. Furthermore, repeated use of
the phrase “in one embodiment” does not necessarily refer to
the same embodiment, though it may.

ASIC: application specific integrated circuit.

CD: compact disk.

CD-R: CD recordable.

CD-RW: CD rewriteable.

DVD: digital versatile disk and/or digital video disk.

HTTP: hypertext transfer protocol.

LAN: local area network.

PCI: peripheral component interconnect.

PCIE: PCI express.

RAM: random access memory.

DRAM: dynamic RAM.

SRAM: synchronous RAM.

ROM: read only memory.

PROM: programmable ROM.

EPROM: erasable PROM.

EEPROM: electrically erasable PROM.

SQL: structured query language.

OQL: object query language.

USB: universal serial bus.

XML: extensible markup language.

WAN: wide area network.

XLink describes connections between documents. XLink
provides an attribute-based syntax for attaching links to docu-
ments. XLink provides an XML syntax for describing
directed graphs in which the vertices are documents at par-
ticular URIs and the edges are links between the documents.
A simple link defines a one-way connection between two
resources, the source (e.g., starting resource) is the link ele-
ment while the target (e.g., ending resource) is identified by a
URI. XLinks use locators and arcs. Each locator element has
an xlink:type attribute associated with the value locator and
an xlink:href attribute containing a URI for the resource it
locates. Arcs are paths between resources. Linkbases are
XML documents that contain inbound or third-party links. A
linkbase may establish links from documents other than the
linkbase itself.

XML refers to extensible markup language. XML is a
document format, a meta-markup language for text docu-
ments. XML documents are trees that start at a root. XML
documents include elements. An element can be defined
generically and have a particular instance(s). An instance of
an element has “content” (e.g., a value(s)). XML elements
can have attributes. An attribute is a name-value pair attached
to the element start tag. XML Schemas describe allowed
content of XML documents conforming to a particular XML
vocabulary.

2 <

25

30

35

40

45

55

6

XPath is a non-XML language used to identity particular
parts of XML documents. XPath indicates nodes by position,
relative position, type, content, and so on. XPath expressions
may represent numbers, strings, Booleans, and so on. XPath
is a language for picking nodes and sets of nodes out of the
tree structure that is an XML document.

XPointer uses XPath expressions to identify the particular
point in or part of an XML document to which an XLink links.
XPointer addresses individual parts of an XML document.

XSL equals extensible stylesheet language. XSL include
XSL transformations and XSL formatting objects.

XSLT equals XSL transformations. XSLT is an XML
application that specifies rules by which one XML document
is transferred into another. XSLT is a general purpose lan-
guage for transforming one XML document into another for
purposes including, for example, web page display. An XSLT
stylesheet contains templates that control what output is cre-
ated from what input. An element has a “match” attribute that
contains an XPath pattern identifying the input it matches.
XSLT uses XPath expressions to match and select particular
elements in an input document for copying into an output
document or for further processing.

“Computer component”, as used herein, refers to a com-
puter-related entity (e.g., hardware, firmware, software in
execution, combinations thereof). Computer components
may include, for example, a process running on a processor, a
processor, an object, an executable, a thread of execution, and
a computer. A computer component(s) may reside within a
process and/or thread. A computer component may be local-
ized on one computer and/or may be distributed between
multiple computers.

“Computer communication”, as used herein, refers to a
communication between computing devices (e.g., computer,
personal digital assistant, cellular telephone) and can be, for
example, a network transfer, a file transfer, an applet transfer,
an email, an HTTP transfer, and so on. A computer commu-
nication can occur across, for example, a wireless system
(e.g., IEEE 802.11), an Ethernet system (e.g., IEEE 802.3), a
token ring system (e.g., IEEE 802.5), a LAN, a WAN, a
point-to-point system, a circuit switching system, a packet
switching system, and so on.

“Computer-readable medium”, as used herein, refers to a
medium that stores signals, instructions and/or data. A com-
puter-readable medium may take forms, including, but not
limited to, non-volatile media, and volatile media. Non-vola-
tile media may include, for example, optical disks, magnetic
disks, and so on. Volatile media may include, for example,
semiconductor memories, dynamic memory, and so on. Com-
mon forms of a computer-readable medium may include, but
are not limited to, a floppy disk, a flexible disk, a hard disk, a
magnetic tape, other magnetic medium, an ASIC, a CD, other
optical medium, a RAM, a ROM, a memory chip or card, a
memory stick, and other media from which a computer, a
processor or other electronic device can read.

In some examples, “database” is used to refer to a table. In
other examples, “database” may be used to refer to a set of
tables. In still other examples, “database” may refer to a set of
data stores and methods for accessing and/or manipulating
those data stores.

“Data store”, as used herein, refers to a physical and/or
logical entity that can store data. A data store may be, for
example, a database, a table, a file, a list, a queue, a heap, a
memory, a register, and so on. In different examples, a data
store may reside in one logical and/or physical entity and/or
may be distributed between two or more logical and/or physi-
cal entities.

US 9,058,407 B2

7

“Logic”, as used herein, includes but is not limited to
hardware, firmware, software in execution on a machine,
and/or combinations of each to perform a function(s) or an
action(s), and/or to cause a function or action from another
logic, method, and/or system. Logic may include a software
controlled microprocessor, a discrete logic (e.g., ASIC), an
analog circuit, a digital circuit, a programmed logic device, a
memory device containing instructions, and so on. Logic may
include one or more gates, combinations of gates, or other
circuit components. Where multiple logical logics are
described, it may be possible to incorporate the multiple
logical logics into one physical logic. Similarly, where a
single logical logic is described, it may be possible to distrib-
ute that single logical logic between multiple physical logics.

An “operable connection”, or a connection by which enti-
ties are “operably connected”, is one in which signals, physi-
cal communications, and/or logical communications may be
sent and/or received. An operable connection may include a
physical interface, an electrical interface, and/or a data inter-
face. An operable connection may include differing combi-
nations of interfaces and/or connections sufficient to allow
operable control. For example, two entities can be operably
connected to communicate signals to each other directly or
through one or more intermediate entities (e.g., processor,
operating system, logic, software). Logical and/or physical
communication channels can be used to create an operable
connection.

“Query”, as used herein, refers to a semantic construction
that facilitates gathering and processing information. A query
may be formulated in a database query language (e.g., SQL),
an OQL, a natural language, and so on.

“Signal”, as used herein, includes but is not limited to,
electrical signals, optical signals, analog signals, digital sig-
nals, data, computer instructions, processor instructions,
messages, a bit, a bit stream, or other means that can be
received, transmitted and/or detected.

“Software”, as used herein, includes but is not limited to,
one or more executable instructions that cause a computer,
processor, or other electronic device to perform functions,
actions and/or behave in a desired manner. “Software” does
not refer to stored instructions being claimed as stored
instructions per se (e.g., a program listing). The instructions
may be embodied in various forms including routines, algo-
rithms, modules, methods, threads, and/or programs includ-
ing separate applications or code from dynamically linked
libraries.

“User”, as used herein, includes but is not limited to one or
more persons, software, computers or other devices, or com-
binations of these.

Some portions of the detailed descriptions that follow are
presented in terms of algorithms and symbolic representa-
tions of operations on data bits within a memory. These algo-
rithmic descriptions and representations are used by those
skilled in the art to convey the substance of their work to
others. An algorithm, here and generally, is conceived to be a
sequence of operations that produce a result. The operations
may include physical manipulations of physical quantities.
Usually, though not necessarily, the physical quantities take
the form of electrical or magnetic signals capable of being
stored, transferred, combined, compared, and otherwise
manipulated in a logic, and so on. The physical manipulations
create a concrete, tangible, useful, real-world result.

It has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, ele-
ments, symbols, characters, terms, numbers, and so on. It
should be borne in mind, however, that these and similar
terms are to be associated with the appropriate physical quan-

20

40

45

55

8

tities and are merely convenient labels applied to these quan-
tities. Unless specifically stated otherwise, it is appreciated
that throughout the description, terms including processing,
computing, determining, and so on, refer to actions and pro-
cesses of a computer system, logic, processor, or similar
electronic device that manipulates and transforms data rep-
resented as physical (electronic) quantities.

Example methods may be better appreciated with refer-
ence to flow diagrams. While for purposes of simplicity of
explanation, the illustrated methodologies are shown and
described as a series of blocks, it is to be appreciated that the
methodologies are not limited by the order of the blocks, as
some blocks can occur in different orders and/or concurrently
with other blocks from that shown and described. Moreover,
less than all the illustrated blocks may be required to imple-
ment an example methodology. Blocks may be combined or
separated into multiple components. Furthermore, additional
and/or alternative methodologies can employ additional, not
illustrated blocks.

FIG. 1 illustrates a method 100 associated with providing
persistent multimedia content versioning. Method 100 may
include, at 110, controlling a database management system
(DBMS) to instantiate a database object. Controlling the
DBMS may include providing a signal to the DBMS, invok-
ing a method in the DBMS, providing data through an appli-
cation programming interface (API) associated with the
DBMS, and so on. The database object may include a first
binary large object (BLOB) attribute, an XML edits attribute,
and a set of metadata attributes. In one example the database
object is a PL/SQL object.

Method 100 may also include, at 120, storing a first set of
binary data associated with a multimedia content in the first
BLOB attribute. The multimedia content may be, for
example, a medical image, a movie, a slide show, and so on.

Method 100 may also include, at 130, storing a value(s) in
the set of metadata attributes. The metadata attributes may be
configured to store information associated with the multime-
dia content and/or the database object. Thus, the metadata
attributes may store information including, but not limited to,
a content name, a content size, a content creation date, a
content source, a patient name, a patient identifier, an encod-
ing format, a billing code, and so on.

Method 100 may also include, at 140, controlling the
DBMS to store the database objectin a columninatableina
relational database managed by the DBMS. Note that the
database object includes both the media content, XML
attributes describing the content and/or object, and an XML
edits attribute in which edits to the metadata can be stored.
Thus, the media, its attributes, and its edits may be stored in a
single database object in a single database column.

While FIG. 1 illustrates various actions occurring in serial,
it is to be appreciated that various actions illustrated in FIG. 1
could occur substantially in parallel. By way of illustration, a
first process could control the DBMS to instantiate and store
objects, a second process could store binary data, and a third
process could store values in the metadata attributes. While
three processes are described, it is to be appreciated that a
greater and/or lesser number of processes could be employed
and that lightweight processes, regular processes, threads,
and other approaches could be employed.

In one example, a method may be implemented as com-
puter executable instructions. Thus, in one example, a com-
puter-readable medium may store computer executable
instructions that if executed by a machine (e.g., processor)
cause the machine to perform method 100. While executable
instructions associated with the method 100 are described as
being stored on a computer-readable medium, it is to be

US 9,058,407 B2

9

appreciated that executable instructions associated with other
example methods described herein may also be stored on a
computer-readable medium.

FIG. 2 illustrates a method 200 that includes several actions
similar to those described in connection with method 100
(FIG. 1). For example, method 200 includes controlling a
DBMS at 210 to instantiate a database object, storing binary
data at 220, storing values in the metadata attributes at 230,
and controlling the DBMS to store the database object at 240.
However, method 200 includes an additional action.

For example, method 200 includes, at 250, storing in the
XML edits attribute an editing entry associated with the set of
metadata attributes. The storing at 250 may be performed
upon determining that a member of the set of metadata
attributes was changed. Changes may take different forms
and thus the editing entry is to describe a change to the
member of the set of metadata attributes. In one example, the
editing entry may be a human-readable XML attribute.

In one example, the editing entry may describe a deletion
from the set of metadata attributes. In another example, the
editing entry may describe a deletion from the first set of
binary data. The deletion may be associated with, for
example, cropping an image. Thus, in one example, not only
is versioning available for the more common situation of
metadata deletions, but also for the less frequent situation of
media deletions. Deletions are only one type of edit that
metadata attributes and/or media may experience. Therefore,
in one example, the editing entry may include an addition to
the set of metadata attributes and/or an update to the set of
metadata attributes. The update may change an existing value
while an addition may insert a completely new attribute.
Thus, method 200 facilitates providing forward compatibility
for previously stored media by allowing the addition of new
metadata attributes. As described above, in some cases the
media itself may change. Thus, in one example, the editing
entry may include an addition to the first set of binary data,
and/or an update to the first set of binary data. These changes
may be the result, for example, of a retouching of the media
content. For example, a first medical image may include
artifacts associated with motion that occurred during imag-
ing. The first medical image may subsequently be retouched
to remove and/or lessen the artifacts. Rather than store a
completely new copy of the medical image, method 200
facilitates storing edits for reproducing a copy.

FIG. 3 illustrates amethod 300 that includes several actions
similar to those described in connection with method 200
(FIG. 2). For example, method 300 includes controlling a
DBMS at 310 to instantiate a database object, storing binary
data at 320, storing values in the metadata attributes at 330,
controlling the DBMS to store the database object at 340, and
storing an edit entry at 350. However, method 300 includes an
additional action.

The additional action concerns a second BLOB attribute in
the database object. The second BLOB attribute may store a
second set of binary data associated with a binary mapping of
a change to a member of the set of metadata attributes. Thus,
the instantiating at 310 and the storing at 340 may concern an
object thatincludes the second BLOB attribute along with the
first BLOB attribute, the metadata, and the XML edits
attribute.

Method 300 includes, at 360, storing in the second BLOB
attribute a set of binary data associated with an addition to the
set of metadata attributes and/or and a set of binary data
associated with an update to the set of metadata attributes.
The differences between a first version of the set of metadata
attributes and a second different version of the set of metadata
attributes may be pre-computed and thus the storing at 360

10

20

40

45

60

10

may include storing the difference as a set of binary data in the
second BLOB attribute. Similarly, a binary mapping associ-
ated with an edit entry in the XML edits attribute may be
computed. Thus, the storing at 360 may include storing the
binary mapping as a set of binary data in the second BLOB
attribute.

In one example, the second set of binary data may also be
associated with a binary mapping of a change to the first set of
binary data. In one example, the storing at 360 may include
storing in the second BLLOB attribute a set of binary data
associated with an addition to the first set of binary data
and/or a set of binary data associated with an update to the
first set of binary data. This is a less frequent occurrence.

FIG. 4illustrates a method 400 that includes several actions
similar to those described in connection with method 300
(FIG. 3). For example, method 400 includes controlling a
DBMS at 410 to instantiate a database object, storing binary
data at 420, storing values in the metadata attributes at 430,
controlling the DBMS to store the database object at 440, and
storing an edit entry at 450. However, method 400 includes
additional actions concerning indexing the XML edits
attribute.

Method 400 includes, at 460, controlling the DBMS to
produce an index for the XML edits attribute. Controlling the
DBMS may include, for example, controlling the DBMS to
produce an index on XML content. With an index available,
method 400 may accept queries. Therefore, method 400 may
include, at 470, providing a result to a keyword query directed
at the XML edits attribute. Providing the result at 470 may
also include providing a result to an XPATH query directed at
the XML edits attribute. In either case, the result is based, at
least in part, on the index created in response to controlling
the DBMS at 460.

FIG. 5illustrates a method 500 that includes several actions
similar to those described in connection with method 300
(FIG. 3). For example, method 500 includes controlling a
DBMS at 510 to instantiate a database object, storing binary
data at 520, storing values in the metadata attributes at 530,
controlling the DBMS to store the database object at 540, and
storing an edit entry at 550. However, method 500 includes an
additional action.

Method 500 includes, at 560, providing a binary stream
that represents a selected version of the database object. The
binary stream may be built from the first set of binary data, the
set of metadata attributes, and the XML edits attribute. In one
example, providing the binary stream includes computing
BLOB(I+K)=BLOB(D)-U(1,K)+M(LK);

where BLOB(]) is the I-th version of the first set of binary
data;

where U(I,K) represents a complete set of metadata
attributes to be deleted from I-th version of the database
object; and

where M(LK) represents a complete set of metadata
attributes to be added to the I-th version of the database
object.

In another example, edits to both the metadata and the
image data may be considered. Therefore, providing the
binary stream at 560 may include computing BLOB,,,,,,7cre
(+K)=BLOB, e~V comprere LKI+M 102 (L KD

where BLOB,.,,,,z...(I) is the I-th version of the first set of
binary data;

where U,.,,,,,...(1,K) represents a complete set of metadata
attributes to be deleted from I-th version of the database
object and a complete set of deletions from the I-th version of
the first set of binary data; and

US 9,058,407 B2

11

where M,.,,,,...7...(I,K) represents a complete set of metadata
attributes to be added to the I-th version of the database object
and a complete set of additions to the I-th version of the first
set of binary data.

In one example, data structures may be constructed that
facilitate storing data on a computer-readable medium and/or
in a data store. The data structure may be an object, where
“object” is used in its computer-science term-of art form.
Thus, the object may include data and methods for manipu-
lating that data. Thus, in one example, a computer-readable
medium may store an object that includes a first storage area
containing data representing a medical image. While a medi-
cal image is described, more generally the first storage area
could store a set of binary data associated with a multimedia
content. The object may also include a second storage area
containing metadata describing the medical image, and a
third storage area containing edits to the metadata. In one
example, a selected version of the object may be synthesized
from the data representing the medical image, the metadata,
and the edits to the metadata. While three storage areas are
described, it is to be appreciated that a greater and/or lesser
number of areas could be employed. Additionally, it is to be
appreciated that other objects produced by the example sys-
tems and methods described herein may be encoded onto a
computer-readable medium.

FIGS. 1 through 5 illustrate methods 100 through 500. One
skilled in the art will appreciate that other methods that
manipulate other database object instances may be performed
to facilitate persistent multimedia content versioning. One
example method may include controlling a DBMS to instan-
tiate a database object that includes a first BLOB attribute and
a versions attribute. This example method may also include
storing a first set of binary data associated with a multimedia
content in the first BLOB attribute and storing a value(s) in the
versions attribute. The values stored in the versions attribute
may be associated with the multimedia content and/or the
database object. The example method may also include con-
trolling the DBMS to store the database object in a column in
a table in a relational database managed by the DBMS.

The versions attribute may store information useful for
assembling a version of a media content. Thus, in one
example, the versions attribute may store an assembly
instruction(s) from which a version of the binary object can be
computed. The assembly instructions may include a delete
instruction that identifies a segment of the binary data asso-
ciated with the multimedia content to be excluded from a
version. The assembly instructions may also include an addi-
tion instruction that identifies a segment of binary data to be
added to the binary data associated with the multimedia con-
tent. The assembly instructions may also include a copy
instruction that identifies a segment of binary data to be
copied from the binary data associated with the multimedia
content when a version of the multimedia content is
assembled.

In one example, the method may include controlling the
DBMS to store binary streams to be added to the database
object. The binary streams are stored in the database object.

In one example, the method may also include controlling
the DBMS to instantiate the database object to include a set of
metadata in which an assembly instruction can be stored. The
set of metadata may store additional information. For
example, the set of metadata may store a stream segment to be
added to a version of the database object.

The example method may also include controlling the
DBMS to instantiate the database object to include a second
binary object. The second binary object may store an assem-
bly instruction. The second binary object may also store a
stream segment to be added to a version of the database
object.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 6 illustrates a system 600 that provides multimedia
content versioning for a persistently stored database object.
System 600 includes a database object logic 610. Logic 610
creates a database object 660 that is stored in a media content
table 640 in a media database 630. The database object 660
includes a first binary large object (BLOB) attribute to store a
multimedia content and a set of metadata attributes that
describe the database object and/or the multimedia content.
The multimedia content may be, for example, a medical
image (e.g., MRI image). The database object 660 also
includes an XML edits attribute that stores data describing
edits made to the set of metadata attributes. In one example,
the database object 660 may also include a second BLOB
attribute that stores a second set of binary data. This second
set of binary data may hold a binary mapping of a change to
a member of the set of metadata attributes. Media content
table 640 may store the object 660 and an identifier 650
associated with the object 660. Note how this differs from
conventional systems where a media database may store
metadata associated with a multimedia content but the mul-
timedia content may actually be stored in an external storage
location.

System 600 also includes a versioning logic 620. Version-
ing logic 620 provides versioning for the database object 660
stored in the media content table 640 in the media database
630. Versioning logic 620 may, upon determining that a mem-
ber of the set of metadata attributes in object 660 has been
changed, control the database object logic 610 to store data in
the XML edits attribute of the database object 660 stored in
the media content table 640 in the media database 630. The
data stored by the database object logic 610 may include an
editing entry associated with a change to a member of the set
of metadata attributes. While system 600 is illustrated resid-
ing outside database 630, it is to be appreciated that in one
example system 600 may itself be persistently stored in data-
base 630.

FIG. 7 illustrates a system 700 that provides multimedia
content versioning for a persistently stored database object.
System 700 includes several elements similar to those
described in connection with system 600 (FIG. 6). For
example, system 700 includes a database object logic 710 and
a versioning logic 720 that participate in persistently storing
an object 760 in a media content table 740 in media database
730. The object 760 may have a related identifier 750 stored
in the media content table 740. However, system 700 includes
an additional logic.

System 700 includes an assembly logic 770 to provide a
binary stream 780 that represents a selected version of the
database object 760. In one example, the assembly logic 770
builds (e.g., assembles) the binary stream representing the
selected version from data in object 760. For example, assem-
bly logic 770 may build the binary stream 780 from the first
set of binary data, the set of metadata attributes, the second set
of binary data, and the XML edits attribute. Building the
binary stream 780 may include identifying a base version of
object 760, deletions from object 760, and additions and/or
modifications to object 760. In one example, assembly logic
770 may be a stored procedure in a media database 730.

In one example, assembly logic 770 may compute:

BLOB(I+K)=BLOB(I)- U(LK)+M(L.K)

Where:
BLOB(]) is the I-th version of the first set of binary data;
U(LK) is a complete set of metadata attributes to be deleted
from I-th version of the database object; and
M(I,K) represents a complete set of metadata attributes to
be added to the i-th version of the database object.
The following derivation illustrates how a particular ver-
sion of a media object may be assembled without requiring
the assembly of intermediate versions. For example, a version

US 9,058,407 B2

13

4 can be assembled directly from a version 1 without assem-
bling version 2 and version 3, and vice versa.

A;: A set of attributes to add to the metadata attributes of
version i

D;: A set of attributes to delete from the metadata attributes of
version i

U(LK): Complete set of attributes to be deleted from meta-
data of version I in order to change from version [into version
K.

M(I,K): Complete set of attributes to be added to metadata of
version [in order to change from version I to version K.
The following recursive function can be applied to update a
BLOB attribute:

BLOB()):=(BLOB(i-1)-D,)+4,.

if BLOB(I) stored, derive BLOB(i+1), BLOB(i+2) . . . and
so on from it:

BLOB(i + 1) := (BLOB(i — 1) = D;) + A;) — Dy + Arsy
1= (BLOB(i = 1) = D; = Diy1) + ((A; = Div1) + Ajyp)
= (BLOB(i — 1) = Union(D;, Diy1)) + ((A; = Dis1) + Ajr1)

BLOB(i + k): = (BLOB(i) = Union(Dis 1, ... Dixs) +
(Ais1 = Disa + Aiv2 = Diggoo. = Digg + Ajg)
BLOB(+k) = BLOB() - U(I, K) + M(I, K);
Where U(1, K): = Union(D;, |, ... D;;4) and

M, K): = A1 —Dia + Az = Diva oo = Dig + Ajiy

BLOB(i-1), BLOB(i-2) and so on can be derived simi-
larly:

BLOB(i-1)=BLOB(i)-A+D;

BLOB(i-2)=(BLOB(1)-A,+D,)-A, +D, ,

BLOB(i-k)=BLOB(i)-Union(4A,, . . . A,)+D,-A+
Di+Ai+ . =A 4D)

In one example, changes (e.g., deletions) between versions
are constrained to include the complete attribute value, and
not just attribute tag, in order to get back to an earlier version.
Using this derivation, for a persistent object that stores the
current version I of a multimedia object, for each version of
media object K, U(L,K) and M(I,K) can be pre-computed and
stored. Thus, some example systems and methods described
herein store the stream descriptor representation of U(L,K)
and M(I,K) in the extension attribute of the persistently stored
database object. While system 700 is illustrated residing out-
side database 730, it is to be appreciated that in one example
system 700 may itself be persistently stored in database 730.

FIG. 8 illustrates an application programming interface
(API) 800 that provides access to a system 810 associated
with providing persistent multimedia content versioning. The
API 800 may be employed, for example, by a programmer
820 and/or a process 830 to gain access to processing per-
formed by the system 810 and/or a functionally equivalent
method. For example, the programmer 820 may write a pro-
gram to access the system 810 (e.g., invoke its operation,
monitor its operation, control its operation) where writing the
program is facilitated by the presence of the API 800. Rather
than the programmer 820 having to understand the internals
of'the system 810, the programmer 820 merely has to learn the
interface to the system 810. This facilitates encapsulating the
functionality of system 810 while exposing that functionality.

In one example, the API 800 may be stored on a computer-
readable medium. The interfaces in the API 800 can include,

5

10

15

20

25

30

35

40

45

50

55

60

65

14

but are not limited to, a first interface 840 that communicates
information associated with initializing a persistent multime-
dia database object with a binary media and with XML meta-
data attributes. The interfaces may also include a second
interface 850 that communicates information associated with
updating a persistent multimedia database object from a first
previous version to a second version. The interfaces may also
include a third interface 860 that communicates information
associated with updating a persistent multimedia database
object so that a specified version of the persistent multimedia
database object is stored.

FIG. 9 illustrates an example computing device in which
example systems and methods described herein, and equiva-
lents, may operate. The example computing device may be a
computer 900 that includes a processor 902, a memory 904,
and input/output ports 910 operably connected by a bus 908.
In one example, the computer 900 may include a persistent
multimedia content versioning logic 930 configured to pro-
vide content versioning for a multimedia object. In different
examples, the logic 930 may be implemented in hardware,
software, firmware, and/or combinations thereof. While the
logic 930 is illustrated as a hardware component attached to
the bus 908, it is to be appreciated that in one example, the
logic 930 could be implemented in the processor 902.

Thus, logic 930 may provide means (e.g., hardware, soft-
ware, firmware) for instantiating a persistent database object.
The persistent database object may include, for example, a
first binary large object (BLOB) attribute to store a multime-
dia content, a set of metadata attributes that describe the
database object and/or the multimedia content, an XML edits
attribute to store an edit to the set of metadata attributes, and
a second BLOB attribute to store a second set of binary data
associated with a binary mapping of a change to a member of
the set of metadata attributes. The logic 930 may also include
means for updating the XML edits attribute in response to
detecting an edit of a member of the set of metadata attributes.
For example, when a metadata attribute is deleted, a metadata
attribute is added, a metadata attribute value is changed, and
so on, these manipulations may be detected and logic 930
may update the XML edits attribute to capture information
describing the manipulation. Logic 930 may also include
means for providing a binary stream representing a version of
the persistent database object. The version may be synthe-
sized from data stored in the first BLOB, data stored in the set
of metadata attributes, and data stored in the XML edits
attribute.

The means may be implemented, for example, as an ASIC
programmed to control processor 902 with respect to process-
ing data 916. The means may also be implemented as com-
puter executable instructions that are presented to computer
900 as data 916 that are temporarily stored in memory 904
and then executed by processor 902.

Generally describing an example configuration of the com-
puter 900, the processor 902 may be a variety of various
processors including dual microprocessor and other multi-
processor architectures. A memory 904 may include volatile
memory and/or non-volatile memory. Non-volatile memory
may include, for example, ROM, PROM, and so on. Volatile
memory may include, for example, RAM, SRAM, DRAM,
and so on.

A disk 906 may be operably connected to the computer 900
via, for example, an input/output interface (e.g., card, device)
918 and an input/output port 910. The disk 906 may be, for
example, a magnetic disk drive, a solid state disk drive, a
floppy disk drive, a tape drive, a Zip drive, a flash memory
card, a memory stick, and so on. Furthermore, the disk 906
may be a CD-ROM drive, a CD-R drive, a CD-RW drive, a

US 9,058,407 B2

15
DVD ROM, and so on. The memory 904 can store a process
914 and/or a data 916, for example. The disk 906 and/or the
memory 904 can store an operating system that controls and
allocates resources of the computer 900.

The bus 908 may be a single internal bus interconnect
architecture and/or other bus or mesh architectures. While a
single bus is illustrated, it is to be appreciated that the com-
puter 900 may communicate with various devices, logics, and
peripherals using other busses (e.g., PCIE, 1394, USB, Eth-
ernet). The bus 908 can be types including, for example, a
memory bus, a memory controller, a peripheral bus, an exter-
nal bus, a crossbar switch, and/or a local bus.

The computer 900 may interact with input/output devices
via the /o interfaces 918 and the input/output ports 910.
Input/output devices may be, for example, a keyboard, a
microphone, a pointing and selection device, cameras, video
cards, displays, the disk 906, the network devices 920, and so
on. The input/output ports 910 may include, for example,
serial ports, parallel ports, and USB ports.

The computer 900 can operate in a network environment
and thus may be connected to the network devices 920 via the
i/o interfaces 918, and/or the i/0 ports 910. Through the net-
work devices 920, the computer 900 may interact with a
network. Through the network, the computer 900 may be
logically connected to remote computers. Networks with
which the computer 900 may interact include, but are not
limited to, a LAN, a WAN, and other networks.

FIG. 10 illustrates a binary stream 1010 being assembled
from a first set of binary data 1000. The binary stream 1010
may be assembled using the example methods and/or systems
described above. In one example, binary stream segments
1012, 1014, and 1016 may be pre-computed and stored in the
extension attribute of a database object. Assembly instruc-
tions may be stored as a group of tuples. A tuple may include,
for example, one Boolean number followed by two long
types. In one example, the assembly instructions may be
stored in an extension BLOB. In another example, the assem-
bly instructions may be encoded in XML and saved in a
metadata attribute of a media object.

Data 1000 corresponds to one version of a multimedia
object. Stream 1010 corresponds to a different version that
can be assembled from data 1000 and edit information stored
in the same object as data 1000. Recall that changes (e.g.,
attribute deletions, attribute additions, attribute modifica-
tions) to the version represented by data 1000 can be mapped
into binary operations on the binary stream 1010. A set of
deletes that remove consecutive bytes can be gathered
together as deleting a stream segment (e.g., remove segment2
1004 from data 1000). A set of insertions that add consecutive
bytes can be gathered together as adding a stream segment
(e.g., add segment6 1014 to stream 1010).

Thus, a new version of a multimedia object associated with
1000 can be provided in binary stream 1010. The new version
can be described as a set of stream descriptors that map the
segments of stream 1010 to data 1000. In the case of addi-
tions, additional stream segments may be included. In the
example illustrated in FIG. 10, the version represented by
stream 1010 may be described as:

Segmentl (M, offsetl, lengthl)

Segment3 (M, offset3, length3)

Segment6 (E, offset6, length6)

Segment?7 (M, offsetd, length4)

Where M indicates that the source of the stream segment is
data 1000 (which is stored in the first BLOB attribute of a
database object) and E indicates that the source of the stream
segment is the extension attribute of the database object. In
one example, extension attributes may be managed as fixed-

10

15

20

25

30

35

40

45

50

55

60

65

16

size, strongly-typed binary blocks having a header block to
store pointers. The pointers may facilitate jumping directly to
a specific version.

Thus FIG. 10 illustrates two different versions of a binary
stream associated with a multimedia content and how one is
built from the other. The binary stream 1010 can be built using
a stream oriented interface that starts with a previous version
(e.g., data 1000) and builds new version 1010 one stream
segment at a time during an “assembly”. Insertion segments
can be stored in the extension (2"¢ BLOB) attribute of a
database object so that they are co-located with the persis-
tently stored content 1000. The XML edits attribute store data
(e.g., instructions) associated with the copies, deletes, inserts,
and so on. The instructions may be stream based and thus may
include segment numbers, offsets, and lengths. The second
version (e.g., stream 1010) can be assembled by starting at the
first version (e.g., data 1000) and applying the instructions in
the XML edits attribute to cause a stream based assembly.
While medical images have been described, it is to be appre-
ciated that this stream based assembly may be applied to other
segmented streams, not just multimedia content associated
with medical images.

While example systems, methods, and so on, have been
illustrated by describing examples, and while the examples
have been described in considerable detail, it is not the inten-
tion of the applicants to restrict or in any way limit the scope
of the appended claims to such detail. It is, of course, not
possible to describe every conceivable combination of com-
ponents or methodologies for purposes of describing the sys-
tems, methods, and so on, described herein. Therefore, the
invention is not limited to the specific details, the representa-
tive apparatus, and illustrative examples shown and
described. Thus, this application is intended to embrace alter-
ations, modifications, and variations that fall within the scope
of'the appended claims.

To the extent that the term “includes” or “including” is
employed in the detailed description or the claims, it is
intended to be inclusive in a manner similar to the term
“comprising” as that term is interpreted when employed as a
transitional word in a claim.

To the extent that the term “or” is employed in the detailed
description or claims (e.g., A or B) it is intended to mean “A
or B or both”. When the applicants intend to indicate “only A
or Bbut not both” then the term “only A or B but not both” will
be employed. Thus, use of the term “or” herein is the inclu-
sive, and not the exclusive use. See, Bryan A. Garner, A
Dictionary of Modern Legal Usage 624 (2d. Ed. 1995).

To the extent that the phrase “one or more of, A, B, and C”
is employed herein, (e.g., a data store configured to store one
or more of; A, B, and C) it is intended to convey the set of
possibilities A, B, C, AB, AC, BC, and/or ABC (e.g., the data
store may store only A, only B, only C, A&B, A&C, B&C,
and/or A&B&C). It is not intended to require one of A, one of
B, and one of C. When the applicants intend to indicate “at
least one of A, at least one of B, and at least one of C”, then the
phrasing “at least one of A, at least one of B, and at least one
of C” will be employed.

What is claimed is:

1. A non-transitory computer-readable medium storing
computer-executable instructions, the non-transitory com-
puter-readable medium comprising instructions for:

controlling a database management system (DBMS) to

generate a database object comprising a first binary large
object (BLOB) attribute, an XML edits attribute, and a
set of metadata attributes;

storing a first set of binary data associated with a multime-

dia content in the first BLOB attribute;

US 9,058,407 B2

17

storing one or more values in the set of metadata attributes,
where the one or more values are associated with one or
more of, the multimedia content, and the database
object;
controlling the DBMS to store the database object in a
column in a table in a relational database managed by the
DBMS; and

storing in the XML edits attribute an editing entry that
describes a change to the database object, where the
XML edits attribute includes a plurality of editing
entries that describe a history of changes to values of the
set of metadata attributes and the multimedia content;

upon determining that the database object has changed,
storing in the XML edits attribute an editing entry asso-
ciated with the change, wherein the editing entry
describes the change to the database object and includes
content associated with the change,

wherein the editing entry includes one or more of, an

addition to the set of metadata attributes, and an update
to the set of metadata attributes;
storing in a second BLOB attribute one or more of, a set of
binary data associated with an addition to the set of
metadata attributes, and a set of binary data associated
with an update to the set of metadata attributes; and

providing a binary stream that represents a selected version
of'the database object by computing the selected version
from a current version of the database object and the
plurality of editing entries, wherein the selected version
is generated by deleting a differential set of metadata
attributes from the current version and adding a missing
set of metadata attributes to form the selected version,
wherein the missing set of metadata attributes are
retrieved from the second BLOB attribute.

2. The computer-readable medium of claim 1, wherein the
plurality of editing entries permit storing a plurality of ver-
sions of the database object without storing multiple separate
copies of the database object, and wherein the plurality of
editing entries permit restoring a selected version of the data-
base object from a previous point in time without restoring
intermediate versions of the database object.

3. The computer-readable medium of claim 2, where the
editing entry describes a deletion from the set of metadata
attributes.

4. The computer-readable medium of claim 2, where the
editing entry describes a deletion from the first set of binary
data.

5. The computer-readable medium of claim 1, where the
database object includes a second BLLOB attribute to store a
second set of binary data associated with a binary mapping of
a change to a member of the set of metadata attributes.

6. The computer-readable medium of claim 5, where the
second set of binary data is also associated with a binary
mapping of a change to the first set of binary data.

7. The computer-readable medium of claim 6, where the
editing entry includes one or more of, an addition to the first
set of binary data, and an update to the first set of binary data.

8. The computer-readable medium of claim 7, further com-
prising instructions for storing in the second BLOB attribute
one or more of, a set of binary data associated with an addition
to the first set of binary data, and a set of binary data associ-
ated with an update to the first set of binary data.

9. The computer-readable medium of claim 1, further com-
prising instructions for controlling the DBMS to produce an
index for the XML edits attribute.

10. The computer-readable medium of claim 9, where the
instructions for controlling the DBMS to produce the index

10

15

20

25

30

35

40

45

50

55

60

18

includes instructions for controlling the DBMS to produce an
index associated with XMLIndex.

11. The computer-readable medium of claim 10, further
comprising instructions for performing one or more of, pro-
viding a result to a keyword query directed at the XML edits
attribute, and providing a result to an XPATH query directed
atthe XML edits attribute, where the result is based, at least in
part, on the index.

12. The computer-readable medium of claim 1, where the
database object is a PL/SQL object.

13. The computer-readable medium of claim 1, further
comprising instructions for:

pre-computing a difference between a first version of the
set of metadata attributes and a second different version
of the set of metadata attributes; and

storing the difference as a set of binary data in the second
BLOB attribute.

14. The computer-readable medium of claim 1, further
comprising instructions for: computing a binary mapping
associated with an edit entry in the XML edits attribute and
storing the binary mapping as a set of binary data in the
second BLOB attribute.

15. The computer-readable medium of claim 1, where the
first set of binary data represents a medical image.

16. The computer-readable medium of claim 1, where data
concerning a change to a member of the set of metadata
attributes is to be stored in the set of metadata attributes.

17. The computer-readable medium of claim 16, where an
object assembly instruction is to be derived based, at least in
part, on one or more editing entries stored in the XML edits
attribute.

18. A computing system, comprising:

a database object logic to create a database object compris-
ing a first binary large object (BLOB) attribute to store a
multimedia content, a set of metadata attributes that
describe one or more of, the database object, and the
multimedia content, an XML edits attribute to store a set
of edits that describe a history of changes to values ofthe
set of metadata attributes and the multimedia content,
and a second BLOB attribute to store a second set of
binary data associated with a binary mapping of a
change to a member of the set of metadata attributes; and

a non-transitory computer-readable medium comprising a
versioning logic to provide versioning for the database
object, where providing versioning for the database
object includes, upon determining that a member of the
set of metadata attributes has been changed, controlling
the database object logic to store in the XML edits
attribute an editing entry associated with a change to a
member of the set of metadata attributes,

wherein the versioning logic is configured to store in the
XML edits attribute an editing entry associated with the
change, wherein the editing entry describes the change
to the database object and includes content associated
with the change,

wherein the editing entry includes one or more of, an
addition to the set of metadata attributes, and an update
to the set of metadata attributes,

wherein the versioning logic is configured to store in the
second BLOB attribute one or more of, a set of binary
data associated with an addition to the set of metadata
attributes, and a set of binary data associated with an
update to the set of metadata attributes; and

an assembly logic configured to provide a binary stream
that represents a selected version of the database object
by computing the selected version from a current version
ofthe database object and the plurality of editing entries,

US 9,058,407 B2

19

wherein the selected version is generated by deleting a
differential set of metadata attributes from the current
version and adding a missing set of metadata attributes
to form the selected version, wherein the missing set of
metadata attributes are retrieved from the second BLOB
attribute.
19. A set of application programming interfaces embodied
on a non-transitory computer-readable medium for execution
by a computer component in conjunction with providing per-
sistent multimedia content versioning for a persistent multi-
media database object, comprising:
a first interface to communicate electronic information that
causes the computer component to initialize the persis-
tent multimedia database object having a binary media,
XML metadata attributes, and an XML edits attribute
that includes a set of edits that describe a history of
changes to values of the persistent multimedia database
object, where the persistent multimedia database object
is stored in a single column of a database in a storage
device and comprises a first binary large object (BLOB)
attribute;
a second interface to communicate electronic information
that causes the computer component to update the per-
sistent multimedia database object from a first previous
version to a second version; and
a third interface to communicate electronic information
that causes the computer component to update the per-
sistent multimedia database object so that a specified
version of the persistent multimedia database object is
stored in the storage device,
wherein the third interface is configured to store in the
XML edits attribute an editing entry associated with a
change to the persistent multimedia database object,
wherein the editing entry describes the change to the
persistent multimedia database object and includes con-
tent associated with the change,
wherein the editing entry includes one or more of, an
addition to the XML metadata attributes, and an update
to the XML metadata attributes,
wherein the third interface is configured to store in a second
BLOB attribute one or more of, a set of binary data
associated with an addition to the XML metadata
attributes, and a set of binary data associated with an
update to the XML metadata attributes, and
wherein the third interface is configured to provide a binary
stream that represents a selected version of the persistent
multimedia database object by computing the selected
version from a current version of the persistent multi-
media database object and the XML edits attribute,
wherein the selected version is generated by deleting a
differential set of XML metadata attributes from the
current version and adding a missing set of XML meta-
data attributes to form the selected version, wherein the
missing set of XML metadata attributes are retrieved
from the second BLOB attribute.
20. A non-transitory computer-readable medium storing
computer-executable instructions, the computer-executable
instructions comprising instructions for:
storing a data object comprising a first binary large object
(BLOB) in a database, where the data object comprises:
a first storage area containing data representing an
image;

a second storage area containing metadata describing
the image; and

a third storage area containing edits that are changes to
values of the metadata and the image, where the edits

5

10

15

20

25

30

35

40

45

50

55

60

65

20

include a plurality of changes to the metadata and the
image that describe an editing history of the metadata
and the image;
updating the edits in response to a change in the metadata
where updating the edits includes storing instructions
associated with one or more of a copy, a delete, and an
insert, wherein the edits describe the change to the data-
base object and includes content associated with the
change, wherein the edits includes one or more of, an
addition to the metadata, and an update to the metadata,
wherein the content of the change is stored in a second
BLOB; and
selectively restoring, to a non-transitory computer-read-
able medium, a selected version of the object by synthe-
sizing the version from the data representing the image,
the metadata, and the edits to the metadata, wherein
selectively restoring the selected version includes pro-
viding a binary stream that represents the selected ver-
sion of the database object by computing the selected
version from a current version of the database object and
the edits, wherein the selected version is generated by
deleting a differential set of metadata from the current
version and adding a missing set of metadata to form the
selected version, wherein the missing set of metadata are
retrieved from the second BLOB.
21. A system, comprising:
means for instantiating a persistent database object having
a first binary large object (BLOB) attribute to store a
multimedia content, a set of metadata attributes that
describe the database object and the multimedia content,
an XML edits attribute to store an edit to the set of
metadata attributes and the multimedia content, and a
second BLOB attribute to store a second set of binary
data associated with a binary mapping of a change to a
member of the set of metadata attributes;
means for updating the XML edits attribute in response to
detecting an edit of a member of the set of metadata
attributes, where the means for updating includes at least
one non-transitory computer-readable medium and
where the XML edits attribute include a plurality of
changes of values of the set of metadata and the multi-
media content to maintain an editing history of the per-
sistent multimedia content, wherein the means for
updating include means for storing in the XML edits
attribute an editing entry associated with the edit,
wherein the editing entry describes the edit to the per-
sistent database object and includes content associated
with the edit, wherein the editing entry includes one or
more of, an addition to the set of metadata attributes, and
an update to the set of metadata attributes,
wherein the means for updating the XML edits attribute
include means for storing in the second BLOB attribute
one or more of; a set of binary data associated with an
addition to the set of metadata attributes, and a set of
binary data associated with an update to the set of meta-
data attributes; and
means for providing a binary stream representing a
selected version of the persistent database object based,
at least in part, on data stored in the first BLOB, data
stored in the set of metadata attributes, and data stored in
the XML edits attribute by computing the selected ver-
sion from a current version of the persistent database
object and the XML edits attribute, wherein the selected
version is generated by deleting a differential set of
metadata attributes from the current version and adding
a missing set of metadata attributes to form the selected

US 9,058,407 B2

21

version, wherein the missing set of metadata attributes
are retrieved from the second BLOB attribute.
22. A non-transitory computer-readable medium storing
computer-executable instructions, the non-transitory com-
puter-readable medium comprising instructions for:
controlling a database management system (DBMS) to
create a database object comprising a first binary large
object (BLOB) attribute, and a versions attribute;

storing a first set of binary data associated with a multime-
dia content in the first BLOB attribute;

storing values in the versions attribute, where the values

describe changes to values of the multimedia content,
and the database object to maintain an editing history of
the multimedia content and the database object; and
controlling the DBMS to store the database object in a
column in a table in a relational database managed by the
DBMS;

upon determining that the database object has changed,
storing in the versions attribute an editing entry associ-
ated with a change, wherein the editing entry describes
the change to the database object and includes content
associated with the change,

wherein the editing entry includes one or more of, an

addition to database object, and an update to the data-
base object;

storing in a second BLOB attribute one or more of, a set of

binary data associated with an addition to the database
object, and a set of binary data associated with an update
to the database object; and

providing a binary stream that represents a selected version

of'the database object by computing the selected version
from a current version of the database object and the
editing history of the versions attribute, wherein the
selected version is generated by deleting a differential
set of changes to the database object from the current
version and adding a missing set of changes to the data-
base object to form the selected version, wherein the
missing set of changes are retrieved from the second
BLOB attribute.

10

15

20

25

30

35

22

23. The computer-readable medium of claim 22, where the
versions attribute stores one or more assembly instructions
from which a version of the binary object can be computed.

24. The computer-readable medium of claim 23, further
comprising instructions for controlling the DBMS to store in
the database object one or more binary streams added to the
database object.

25. The computer-readable medium of claim 23, where the
assembly instructions include a delete instruction that iden-
tifies a segment of the binary data associated with the multi-
media content to be excluded from a version.

26. The computer-readable medium of claim 25, where the
assembly instructions include an addition instruction that
identifies a segment of binary data to be added to the binary
data associated with the multimedia content.

27. The computer-readable medium of claim 26, where the
assembly instructions include a copy instruction that identi-
fies a segment of binary data to be copied from the binary data
associated with the multimedia content when a version of the
multimedia content is assembled.

28. The computer-readable medium of claim 23, further
comprising instructions for controlling the DBMS to instan-
tiate the database object to include a set of metadata in which
an assembly instruction can be stored.

29. The computer-readable medium of claim 28, further
comprising instructions for controlling the DBMS to store in
the set of metadata a stream segment to be added to a version
of the database object.

30. The computer-readable medium of claim 23, further
comprising instructions for controlling the DBMS to instan-
tiate the database object to include a second binary object in
which an assembly instruction can be stored.

31. The computer-readable medium of claim 30, further
comprising instructions for controlling the DBMS to store in
the second binary object a stream segment to be added to a
version of the database object.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,058,407 B2 Page 1 of 1
APPLICATION NO. : 12/009750

DATED : June 16, 2015

INVENTOR(S) : Guo

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
Specification

In column 3, line 36, delete “may by” and insert -- may be --, therefor.

(1344

In column 13, line 4, after “i” insert -- . --.

(1344

In column 13, line 6, after “i” insert -- . --.

Signed and Sealed this
Eighth Day of March, 2016

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

